Measuring Coronal Magnetic Fields

- The infrared window
- Technology issues
- Extracting useful magnetic diagnostics

Why Infrared?

- IR detector technology offers new possibilities
- Atmosphere "technology" issues
 - angular resolution
 - transparency
 - scattered brightness
- Physics
 - deepest possible photospheric probe
 - highest possible magnetic sensitivity

Transparency/Scattering

Only the magnetic field will tell...

(from Chen et al., Low, Gibson)

Time evolution doesn't always dominate rotation LASCO C1 Coronal timeseries

Vector Inversions

- FF and potential model from Low (1993)
 - External potential field+FF at r<R + dipole</p>
- Radon transform using Algebraic Reconstruction Technique

$$B(y,z) = \Re^{-1}(B_y(s,\theta)\cos\theta + B_z(s,\theta)\sin\theta)$$

$$\Re^{-1}(\cos\theta\sin\theta) = 0 \ B_v \approx \Re^{-1}(B_{los}\cos\theta) \ B_z \approx \Re^{-1}(B_{los}\sin\theta)$$

The projection problem

The inversion

Another inversion

Potential field...

Summary

- Technology for IR solar physics is "ready"
- Until we can routinely measure coronal fields, we're in the dark: IR Coronal magnetometry and photometry is possible now
- New instruments and technologies are ready for IR